cpdbench.examples.Example_VeryLargeDataset
1from cpdbench.examples.ExampleDatasets import get_extreme_large_dataset_from_file 2from cpdbench.examples.ExampleAlgorithms import numpy_array_accesses 3from cpdbench.examples.ExampleMetrics import metric_accuracy_in_allowed_windows 4from cpdbench.CPDBench import CPDBench 5import pathlib 6 7cpdb = CPDBench() 8 9 10@cpdb.dataset 11def get_large_dataset(): 12 return get_extreme_large_dataset_from_file() 13 14 15@cpdb.algorithm 16def execute_algorithm(dataset, *, array_indexes): 17 return numpy_array_accesses(dataset, array_indexes) 18 19 20@cpdb.metric 21def compute_metric(indexes, confidences, ground_truths): 22 return metric_accuracy_in_allowed_windows(indexes, confidences, ground_truths, window_size=20) 23 24 25# IMPORTANT! 26# To run this example, the file "data/very_big_numpy_file" has to be generated first. 27# To do this first run the script "data/generate_very_big_numpy_file.dat.py" 28 29if __name__ == '__main__': 30 path = pathlib.Path(__file__).parent.resolve() 31 path = path.joinpath("configs", "VeryLargeDatasetConfig.yml") 32 cpdb.start(config_file=str(path))
cpdb =
<cpdbench.CPDBench.CPDBench object>
@cpdb.dataset
def
get_large_dataset():
@cpdb.algorithm
def
execute_algorithm(dataset, *, array_indexes):
@cpdb.metric
def
compute_metric(indexes, confidences, ground_truths):